A New Implementation of the Meshless Finite Volume Method, Through the MLPG “Mixed” Approach

نویسندگان

  • S. N. Atluri
  • Z. D. Han
  • A. M. Rajendran
چکیده

The Meshless Finite Volume Method (MFVM) is developed for solving elasto-static problems, through a new Meshless Local Petrov-Galerkin (MLPG) “Mixed” approach. In this MLPG mixed approach, both the strains as well as displacements are interpolated, at randomly distributed points in the domain, through local meshless interpolation schemes such as the moving least squares(MLS) or radial basis functions(RBF). The nodal values of strains are expressed in terms of the independently interpolated nodal values of displacements, by simply enforcing the strain-displacement relationships directly by collocation at the nodal points. The MLPG local weak form is then written for the equilibrium equations over the local sub-domains, by using the nodal strains as the independent variables. By taking the Heaviside function as the test function, the local domain integration is avoided; this leads to a Meshless Finite Volume Method, which is a counterpart to the mesh-based finite volume method that is popular in computational fluid dynamics. The present approach eliminates the expensive process of directly differentiating the MLS interpolations for displacements in the entire domain, to find the strains, especially in 3D cases. Numerical examples are included to demonstrate the advantages of the present methods: (i) lower-order polynomial basis can be used in the MLS interpolations; (ii) smaller support sizes can be used in the MLPG approach; and (iii) higher accuracies and computational efficiencies are obtained. keyword: Meshless Local Petrov-Galerkin approach (MLPG), Finite Volume Methods, Mixed Methods, Radial Basis Functions (RBF), and Moving Least Squares (MLS). 1 University of California, Irvine Center for Aerospace Research & Education 5251 California Avenue, Suite 140 Irvine, CA, 92612, USA 2 Army Research Office, RTP, NC

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method For Elasticity Problems

The Meshless Local Petrov-Galerkin (MLPG) mixed collocation method is proposed in this paper, for solving elasticity problems. In the present MLPG approach, the mixed scheme is applied to interpolate the displacements and stresses independently, as in the MLPG finite volume method. To improve the efficiency, the local weak form is established at the nodal points, for the stresses, by using the ...

متن کامل

Meshless Local Petrov-Galerkin (MLPG) Mixed Finite Difference Method for Solid Mechanics

The Finite Difference Method (FDM), within the framework of the Meshless Local PetrovGalerkin (MLPG) approach, is proposed in this paper for solving solid mechanics problems. A “mixed” interpolation scheme is adopted in the present implementation: the displacements, displacement gradients, and stresses are interpolated independently using identical MLS shape functions. The system of algebraic e...

متن کامل

A Truly-meshless Galerkin Method, through the Mlpg “mixed” Approach

A truly meshless Galerkin method is formulated in the present study, as a special case of the general Meshless Local Petrov-Galerkin (MLPG) “Mixed” approach. The Galerkin method is implemented as a truly meshless method, for solving elasto-static problems. In the present Galerkin method, the test function is chosen to be the same as the trial function, as a special case of the MLPG approach. Ho...

متن کامل

Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations

A nonlinear formulation of the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method is developed for the large deformation analysis of static and dynamic problems. In the present MLPG large deformation formulation, the velocity gradients are interpolated independently, to avoid the time consuming differentiations of the shape functions at all integration points. The nodal values of ...

متن کامل

The Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in High-Speed Impact, Penetration and Perforation Problems

This paper presents the implementation of a three-dimensional dynamic code, for contact, impact, and penetration mechanics, based on the Meshless Local Petrov-Galerkin (MLPG) approach. In the current implementation, both velocities and velocity-gradients are interpolated independently, and their compatibility is enforced only at nodal points. As a result, the time consuming differentiations of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004